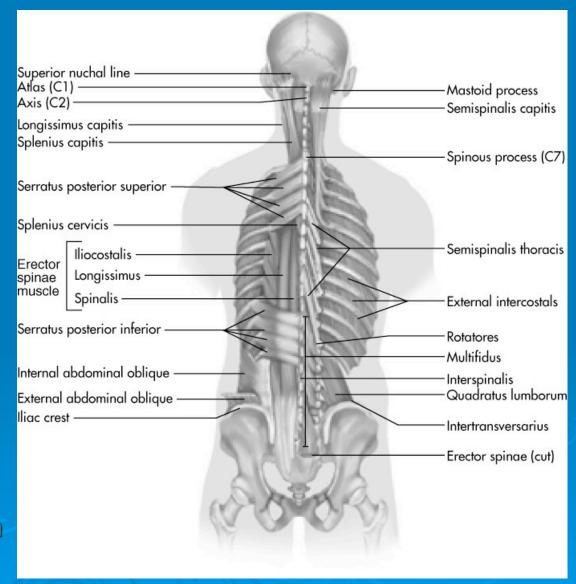
Core Strengthening & Stabilization in

What is the CORE?


- Lumbo-pelvic-hip complex
- Location of center of gravity (CoG)
- Efficient core allows for
 - Maintenance of normal length-tension relationships
 - Maintenance of normal force couples
 - Maintenance of optimal arthrokinematics
 - Optimal efficiency in entire kinetic chain during movement
 - ✓ Acceleration, deceleration, dynamic stabilization
 - Proximal stability for movement of extremities

29 muscles attach to core

Lumbar Spine Muscles

- Transversospinalis group
 - ✓ Rotatores
 - ✓ Interspinales
 - ✓ Intertransversarii
 - ✓ Semispinalis
 - ✓ Multifidus
- Erector spinae
 - ✓ Iliocostalis
 - ✓ Longissimus
 - ✓ Spinalis
- Quadratus lumborum
- Latissimus Dorsi

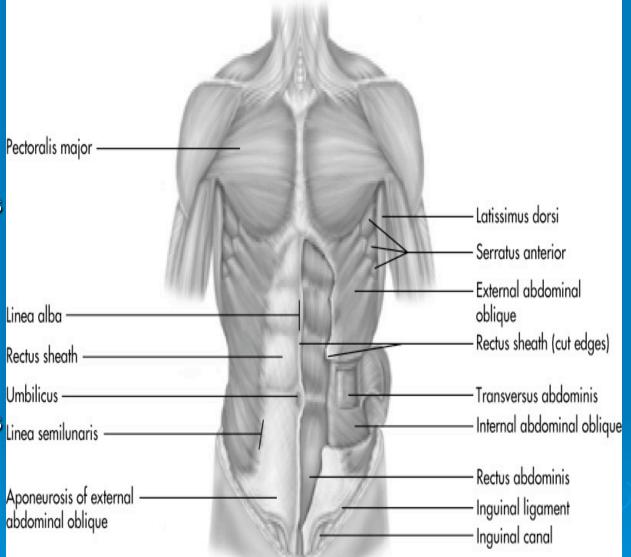
Functional Anatomy

Transversospinalis group

- Poor mechanical advantage relative to movement production
- Primarily Type I muscle fibers with high degree of muscle spindles
 - ✓ Optimal for providing proprioceptive information to CNS
- Inter/intra-segmental stabilization

Erector spinae

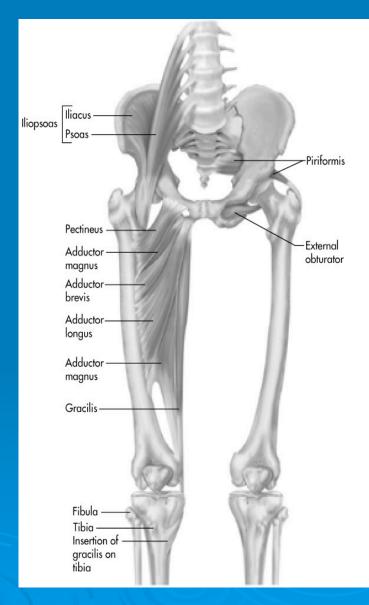
- Provide intersegmental stabilization
- Eccentrically decelerate trunk flexion & rotation


Quadratus Lumborum

- Frontal plane stabilizer
- Works in conjunction with gluteus medius & tensor fascia latae

Latissimus Dorsi

Abdominal Muscles


- Rectus abdominus
- External obliques
- Internal obliques
- Transverse abdominus
- Work to optimize Umbilicus ——
 spinal mechanics Linea semilunaris
- Provide sagittal, frontal & transverse plane stabilization


Psoas

Hip Musculature

- Closed chain vs. open chain functioning
- Works with erector spinae, multifidus & deep abdominal wall
 - ✓ Works to balance anterior shear forces of lumbar spine
- Can reciprocally inhibit gluteus maximus, multifidus, deep erector spinae, internal oblique & transverse abdominus when tight
 - ✓ Extensor mechanism dysfunction
- Synergistic dominance during hip extension
 - ✓ Hamstrings & superficial erector spinae
 - May alter gluteus maximus function, altering hip rotation,

Hip Musculature

Gluteus medius

- Frontal plane stabilizer
 - ✓ Weakness increases frontal & transverse plane stresses (patellofemoral stress)
- Controls femoral adduction & internal rotation
- Weakness results in synergistic dominance of TFL & quadratus lumborum

Gluteus maximus

- Hip extension & external rotation during OKC, concentrically
- Eccentrically hip flexion & internal rotation
- Decelerates tibial internal rotation with TFL
- Stabilizes SI joint
- Faulty firing results in decreased pelvic stability & neuromuscular control

Hamstrings

- Concentrically flex the knee, extend the hip & rotate the tibia
- Eccentrically decelerate knee extension, hip flexion & tibial rotation
- Work synergistically with the ACL to stabilize tibial translation

All muscles produce & control forces in multiple planes

The CORE

- Functions & operates as an integrated unit
 - Entire kinetic chain operates synergistically to produce force, reduce force & dynamically stabilize against abnormal force
- In an efficient state, the CORE enables each of the structural components to operate optimally through:
 - Distribution of weight
 - Absorption of force
 - Transfer of ground reaction forces
- Requires training for optimal functioning!
- Train entire kinetic chain on all levels in all planes

Neuromuscular efficiency

- Ability of CNS to allow agonists, antagonists, synergists, stabilizers & neutralizers to work efficiently & interdependently
- Established by combination of postural alignment & stability strength
- Optimizes body's ability to generate & adapt to forces
- <u>Dynamic stabilization</u> is critical for optimal neuromuscular efficiency
 - Rehab generally focuses on isolated single plane strength gains in single muscles
 - Functional activities are multi-planar requiring acceleration & stabilization
- Inefficiency results in body's inability to respond to demands
 - > Can result in repetitive microtrauma, faulty biomechanics & injury
 - Compensatory actions result

Core Stabilization Concepts

- A specific core strengthening program can:
 - ✓ IMPROVE dynamic postural control
 - ✓ Ensure appropriate muscular balance & joint arthrokinematics in the lumbo-pelvic-hip complex
 - ✓ Allow for expression of dynamic functional performance throughout the entire kinetic chain
 - ✓ Increase neuromuscular efficiency throughout the entire body
- Spinal stabilization
 - Must effectively utilize strength, power, neuromuscular control & endurance of the "prime movers"
 - Weak core = decreased force production & efficiency
 - Protective mechanism for the spine
 - Facilitates balanced muscular functioning of the entire kinetic chain
 - Enhances neuromuscular control to provide a more efficient body positioning

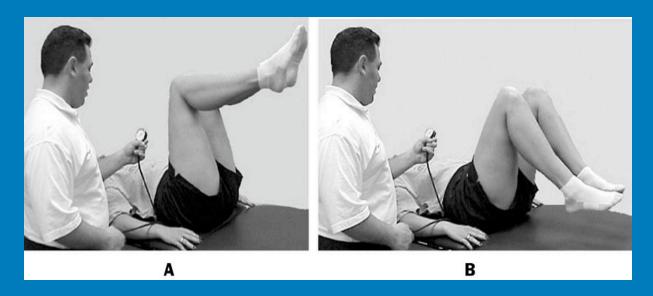
Postural Considerations

- Core functions to maintain postural alignment & dynamic postural equilibrium
 - Optimal alignment = optimal functional training and rehabilitation
- Segmental deficit results in predictable dysfunction
 - Serial distortion patterns
 - ✓ Structural integrity of body is compromised due to malalignment
 - ✓ Abnormal forces are distributed above and below misaligned segment

Neuromuscular Considerations

- Enhance dynamic postural control with strong stable core
- Kinetic chain imbalances = deficient neuromuscular control
 - Impact of low back pain on neuromuscular control
 - Joint/ligament injury → neuromuscular deficits
- > Arthrokinetic reflex
 - Reflexes mediated by joint receptor activity
 - Altered arthrokinetic reflex can result in arthrogenic muscle inhibition
 - Disrupted muscle function due to altered joint functioning

Assessment of the Core


- Muscle imbalances
- Arthrokinematic deficits
- > Core
 - Strength
 - Endurance
 - Neuromuscular control
 - Power
- Overall function of lower extremity kinetic chain

Straight-Leg Lowering Test for Core Strength

- Supine w/ knees in extension
- BP cuff placed under lumbar spine (L4-L5) & raised to 40 mmHg
- With knees extended, ✓ hips to 90°
- Performs drawing in maneuver (belly button to spine) & then flattens back maximally into the table & BP cuff
- Lower legs to table while maintaining flat back
- Hip angle is measured with goniometer

Abdominal Neuromuscular Control Test

- Supine w/ knees & hips in 90° ✓
- BP cuff placed under lumbar spine (L4-L5) & raised to 40 mmHg
- Performs drawing in maneuver (belly button to spine)
- Lower legs until pressure decreases
- Assesses lumbar spine moving into extension (ability of lower abs wall to preferentially stabilize the lumbo-pelvic-hip complex)
 - Hip flexors begin to work as stabilizers
 - Increases anterior shear forces & compressive forces at L4-L5
 - Inhibits transversus abdominis, internal oblique & multifidus

Core Muscular Endurance & Power

Endurance

- Erector spinae performance
 - ✓ Prone with hands behind head & spine extended 30°
 - ✓ Measure ability to sustain position with goniometer
 - Utilize axilla and table for frame of reference
 - ✓ Hold & maintain as long as they can

Power

- Backwards, overhead medicine ball jump & throw
- Assessment of total body power production

- Lower extremity functional profiles
 - Isokinetic tests
 - Balance tests
 - Jump tests
 - Power tests
 - Sports specific functional tests
- Kinetic chain assessment must assess all areas of potential deficiency

Guidelines for Core Stabilization Training

- Perform comprehensive evaluation
 - Muscles imbalances, myokinematic deficits, arthrokinematic deficits, core strength/ neuromuscular control/power, overall kinetic chain function
 - ➤ Muscle imbalances & arthrokinematic deficits must be corrected prior to initiating aggressive training
- Program Requirements
 - Systematic
 - Progressive
 - Functional

- Emphasize muscle contraction spectrum
 - Concentric (force production)
 - Eccentric (force reduction)
 - Isometric (dynamic stabilization)
- Begin program in most challenging environment that can be controlled
 - Must be challenging with progression through function continuum
- Program Variation
 - ✓ Plane of motion
 - ✓ Range of motion
 - ✓ Loading (physioball, med. ball, body blade, weight vest, tubing)
 - ✓ Body position
 - ✓ Amount of control & speed
 - √ Feedback
 - ✓ Duration and frequency (sets, reps, time under tension)

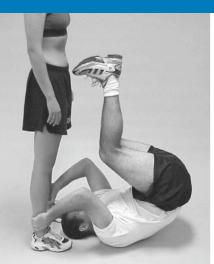
Specific Guidelines – Exercise Selection

- Proprioceptively rich program
- Safe
- Challenging
- Stress multiple planes
- Incorporate multi-sensory environment
- Activity specific
- Progressive functional continuum
 - Slow to fast
 - Simple to complex
 - Known to unknown
 - Low force to high force
 - Eyes open to eyes closed
 - Static to dynamic

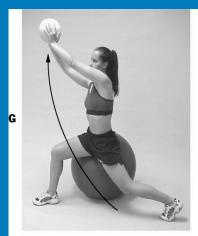

- Goal of program develop optimal levels of functional strength & stabilization
 - Focus on neural adaptations instead of absolute strength gains
 - Increase proprioceptive demands
 - Quality not quantity
 - ✓ Poor technique and neuromuscular control results in poor motor patterns & stabilization
- Focus on function

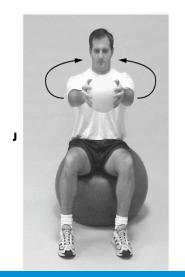
Questions to Ask Yourself

- Is it dynamic?
- Is it multiplanar?
- Is it multidimensional?
- Is it proprioceptively enriched?
- Is it systematic?
- Is it progressive?
- Is it activity-specific?
- Is it based on functional anatomy & science?

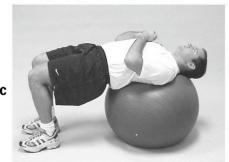

Core Stabilization Training Program

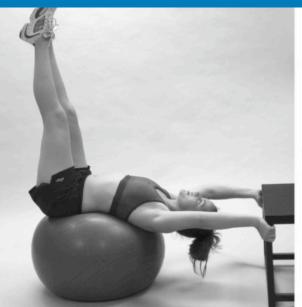
Level I: Stabilization

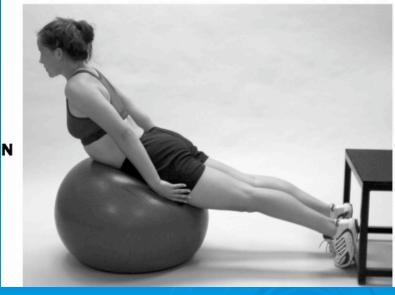




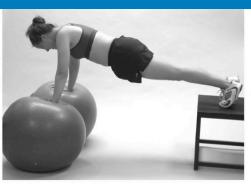
Level II: Stabilization and Strength



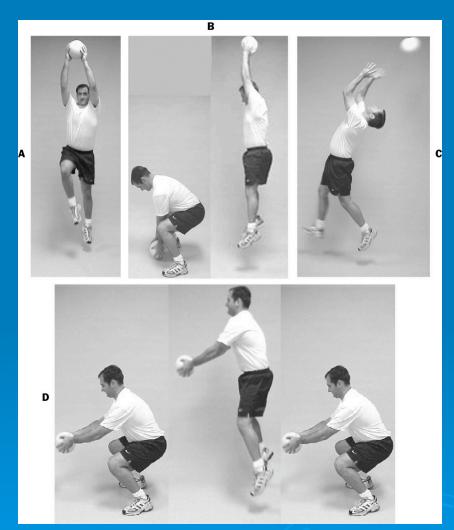


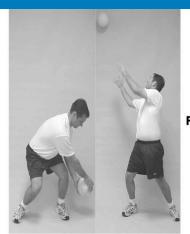


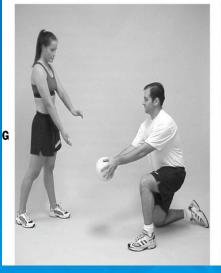

Level II: Stabilization and Strength

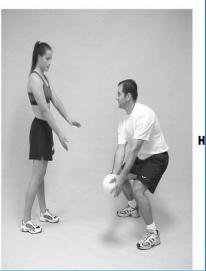


Level III: Integrated Stabilization Strength








Level IV: Explosive Stabilization

References

- Prentice, W.E. (2004). Rehabilitation Techniques for Sports Medicine & Athletic Training, 4th ed.
- Houglum, P. (2005). Therapeutic Exercise for Musculoskeletal Injuries, 2nd ed.
- Kisner, C. & Colby, L.A. (2002).
 Therapeutic Exercise: Foundations & Techniques, 4th ed.